S.E. Sem. III [CIVIL]

Fluid Mechanics - I Prelim Question Paper

Time : 3 Hrs.]

N.[8.:	 Question No. 1 is compulsory. Attempt any THREE out of remaining FIVE questions. Assume suitable data if necessary. Illustrate with neat diagrams wherever necessary. 	C
1.	(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)	Define Total pressure and center of pressure. Write the classification of Orifice. Define vorticity and circulation. Write classification of fluids based on viscosity. State Bernoulli's theorem. Define source, sink. State Pascals law. Differentiate between pathline, streamline, streakline. Define notch and weir. Define nappe and sill.	[2] [2] [2] [2] [2] [2] [2] [2] [2] [2]
2.	(a)	Water in a container experiences a pressure increase a 820 KPa above atmospheric pressure. Find reduction in volume taking K_{water} = 2.2 \times 10 ⁹ Pa	[5]

- (b) A stone weighs 400 KN in air and 225 KN when immersed in water. [5] Calculate the volume of the stone and its relative density.
- (c) A tank with vertical sides of 1 m is square in plan with side 1 m long. [10] It contains oil of specific gravity 0.82 to a depth of 25 m floating on 75 m depth of water. Calculate the total pressure on one side of the tank.
- 3. (a) Differentiate between simple and differential manometer. [4]
 - (b) A container having dimension 7m × 2m and 2.5 m deep contains water 1.25 m deep. The container moves with an acceleration 3 m/s² up to 20° inclined plane. Find the inclination of water surface with horizontal.
 - (c) A gate 3 m wide, 2 m high separates a liquid of specific gravity 1.5 and [10] height 2 m on one side and water upto 1.5 m on other side of gate. Find the forces acting on the two sides of the gate and the resultant force acting on the gate and its location.

4.	(a)	What do you understand by Langrangian and Eulerian method.	[4]
	(b)	The velocity components in 2 dimensional incompressible flow is given	
	• •	by: $U = y^3 + 6x - 3x^2y$	
		$V = 3xy^2 - 6y - x^3$	
		(i) Is the flow continuous?	[4]
		(ii) Find whether the flow is rotational or irrotational.	[4]
		(iii) Determine the potential function.	[4]
		(iv) Determine the stream function.	[4]
5.	(a)	Sketch a pitot tube and explain its working.	[6]
	(b)	Write on Cipolleti weir.	[4]
	(c)	An oil of specify gravity of 0.90 is flowing through a venturimeter [10]
		having inlet and throat diameter as 30 cm and 15 cm respectively.	

- having inlet and throat diameter as 30 cm and 15 cm respectively. The oil mercury differential manometer shows a reading of 250 mm. The throat is 30 cm above inlet section. Find the discharge of oil through the venturimeter when it lies in horizontal plane.
- 6. (a) Water flow over a rectangular sharp crested weir of 1 m height, [10] extends across a rectangular channel of 3 m width. If head of water over the weir is 0.4 m, determine the discharge. Consider the velocity of approach. Take $C_d = 0.62$.
 - (b) An external cylindrical mouthpiece of diameter 100 mm is discharging [10] water under a constant head of 8 m. Determine the discharge and absolute pressure head of water at vena contracta. Take $C_d = 0.855$, C_c for vena contracta = 0.62 atmospheric pressure head = 10.3 m of water.