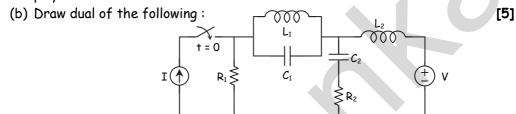
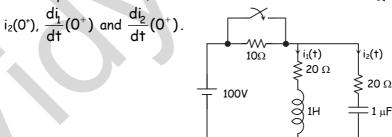
## S.E. Sem. III [INST]

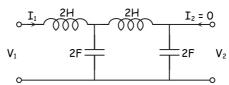
## Electrical Network Analysis and Synthesis Prelim Question Paper



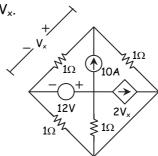

[Marks: 80


Time: 3 Hrs.]

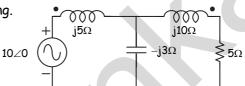
N.B.:


- (1) Question No. 1 is compulsory.
- (2) Solve any three questions out of remaining.
- (3) Assume suitable data if required.
- (4) All questions carry equal marks.
- 1. (a) Test whether  $P(s) = s^5 + 12s^4 + 45s^3 + 60s^2 + 44s + 48$  is Hurwitz [5] polynomial.




- (c) Determine the short circuit admittance parameters of the network [5] shown:  $\bigvee_{V_1} \bigvee_{I_1} \bigvee_{2\Omega} \bigvee_{3\Omega} \bigvee_{Z\Omega} \bigvee_{I_2} \bigvee_{V_2} \bigvee_{V_2$
- (d) State and prove final value theorem of Laplace transform. [5]
- 2. (a) The network shown in figure, a steady state is reached with the [10] switch open. At t = 0, the switch is closed. Determine  $V_c(0^-)$ ,  $i_1(0^+)$ ,



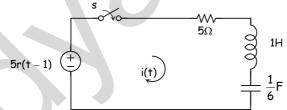

(b) Find the network functions  $\frac{V_1}{I_1}$ ,  $\frac{V_2}{I_1}$ ,  $\frac{V_2}{V_1}$  for the network shown: [5]



(c) In the circuit shown in figure, find  $V_x$ .



3. (a) Find the voltage across 5  $\Omega$  resistor in the network shown below. If [8] K = 0.8 is coefficient of coupling. 000 000

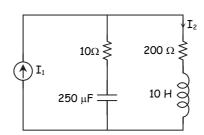



(b) Check the positive real function:


[5]

(i) 
$$F(s) = \frac{s^2 + 6s + 5}{s^2 + 9s + 14}$$
 (ii)  $F(s) = \frac{s^3 + 6s^2 + 7s + 3}{s^2 + 2s + 1}$ 

- (c) List the types of damping in series R-L-C circuit and mention the [4] condition for each damping.
- 4. (a) For the network shown, determine the current i(t) when the switch is [8] closed at t = 0 with zero initial conditions.



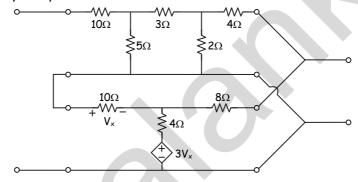

(b) In the given network switch is closed at t = 0. Solve for V,  $\frac{dV}{dt}$ ,  $\frac{d^2V}{dt^2}$ [8]



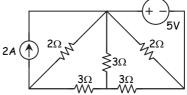
at  $t = 0^{+}$ .

(c) Obtain pole-zero plot for  $\frac{I_2}{I_1}\,.$ 



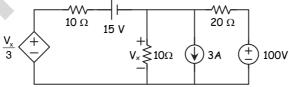

[4]

5. (a) Synthesize the driving point function using Foster - I and Foster - II [10] form:


$$Z(s) = \frac{2(s^2+1)(s^2+9)}{s(s^2+4)}$$

(b) Obtain hybrid parameter of the inter-connected network.






- 6. (a) For the network shown below, draw a graph of network. Select a tree [10] and obtain:
  - (i) Reduced incidence matrix
  - (ii) f-cut set matrix
  - (iii) f-tie set matrix



(b) Find  $V_{\mathsf{x}}$  using superposition theorem.

[10]



