Prelim Paper ## **Electronic Devices and Circuits I** Time: 3 Hrs.] [Marks: 80 - N.B.: (1) Question No. 1 is compulsory. - (2) Attempt any three questions from five questions. - (3) Assume Suitable data if required. - (4) Figures to the right indicate fall marks. - 1. Attempt any FIVE questions: - (a) Explain various types of resistors. [5] - (b) Why gain of BJT is higher than gain of JFET. [5] - (c) What is zero temperature drift biasing. [5] - (d) Consider a BJT has parameters f_T = 500MHz at I_C = 1mA, β = 100 and C μ = 0.3 pF. [5] Calculate bandwidth of f_{β} and capacitance C π of a BJT. - (e) Write short note on different types of filters. [5] - (f) Explain the hybrid pi model of BJT. [5] - 2. (a) Write short note on DC load line and significance of Q-point [10] - (b) A full wave rectifier using a center tapped transformer with two diodes gives output voltage of 250 V to a resistive load, the current being 75 \pm 25 mA. If the ripple factor is 0.001, calculate the specification of the devices and components required fi the filter used are L section LC filter. - 3. (a) Obtain expression for gain bandwidth product. [10] - (b) Determine I_{DQ} , V_{GSQ} , V_{DSQ} if $I_{DSS} = 9$ mA and $V_p = -3V$ for the circuit given in Figure. [10] - **4.** (a) Design single stage BJT CE Amplifier for the following requirements. [15] $A_V \ge 100$, $Z_i \ge 3K\Omega$, $V_{CC} = 18 \text{ V}$ - (b) For above designed circuit calculate Av, Zi, and Ro [5] - 5. (a) For the circuit using JFET as shown in Figure, if $I_{DSS} = 6$ mA, $V_P = -6V$, $r_d = \infty$, [10] $C_{gd} = 4$ pF, $C_{gs} = 6$ pF, $C_{ds} = 1$ pF, determine : higher cutoff frequency. (b) Find Z_0 , Z_i , A_V , A_i for the network given : [10] [20] - 6. Write short notes on (any FOUR): - (a) Millers Theorem - (b) Stability factors of various biasing techniques of BJT - (c) Comparison of BJT CE, CB and CC amplifier - (d) Zener as Regulator - (e) JFET as VVR.