
 1 

S.E. Sem. IV [CMPN]
Analysis of Algorithm

Time: 3 Hrs.] Prelim Paper Solution [Marks : 80

Q.1(a) Explain Complexity classes and polynomial time algorithms 05
Ans.: The Theory of Complexity deals with

 the classification of certain “decision problems” into several classes: the class of
“easy” problems, the class of “hard” problems, the class of “hardest” problems;

 relations among the three classes;
 properties of problems in the three classes.

Polynomial Time algorithm :

Definition: An algorithm is polynomial-time if its running time is O (nk), where k is a
constant independent of n, and n is the input size of the problem that the algorithm
solves.

Remark: Whether you use n or na (for fixed  > 0) as the input size, it will not affect the
conclusion of whether an algorithm is polynomial time.

This explains why we introduced the concept of two functions being of the same type
earlier on. Using the definition of polynomial-time it is not necessary to fixate on the
input size as being the exact minimum number of bits needed to encode the input!

Examples of Polynomial-Time Algorithms :
 The standard multiplication algorithm learned in school has time O (m1 m2) where m1

and m2 are respectively, the number of digits in the two integers.
 DFS has time O (n + e)
 Kruskal’s MST algorithm runs in time O ((e + n) log n).

Q.1(b) Explain general method for greedy algorithms. 05
Ans.: Greedy Method :

The greedy method is one of the most straight forward algorithm design technique ; and
it can be applied to a wide variety of problems.

The greedy method suggests that one can devise an algorithm which works in stages,
considering one input at a time. At each stage, a decision is made regarding whether or
not a particular input is in an optimal solution. This is done by considering the inputs in
an order determined by some selection procedure. If the inclusion of next input into
the partially constructed optimal solution will result in an infeasible solution then this
input is not added to the partial solution.

(Most problems have n input and require us to obtain a subset that satisfies some
constraints are called a feasible solution. We are required to find a feasible solution
that optimizes (minimizes or maximizes) a given objective function. A feasible solution
that does this is called an optimal solution.)

Vidyalankar : S.E.  AA

 2 

Q.1(c) Explain optimal storage of tapes. 05
Ans.: Optimal Storage of Tapes
 On a computer tape of length  there are n programs to be stored. With each program, i

is a length associated, 1  i  n. If the sum of all the lengths of the programs is at most
 , all programs can be stored on the tape. When a program has to be retrieve from this
tape, assume the tape is initially positioned at the front. Therefore if the programs are
stored in the order I = i1, i2, …in, the time tj needed to retrieve program ij is proportional

to
  

kik j
. The expected or mean retrieval time (MRT) is

 

 
 
 

 j1 j n

1 t
n

, if all the

programs are retrieved equally often. In the optimal storage an tape problem. We need
to find a permutation for the n programs. So that when they are stored on the tape, the
MRT is minimized, in this order.

 e.g. Let n = 3 &        1 2 3, , (5,10, 3) . There are n! = 6 possible orderings.
Ordering I D(I) [respective d values]

1, 2, 3 5 + 5 + 10 + 5 + 10 + 3 = 38
1, 3, 2 5 + 5 + 3 + 5 + 3 + 10 = 31
2, 1, 3 10 + 10 + 5 + 10 + 5 + 3 = 43
2, 3, 1 10 + 10 + 3 + 10 + 3 + 5 = 41
3, 1, 2 3 + 3 + 5 + 3 + 5 + 10 = 29
3, 2, 1 3 + 3 + 10 + 3 + 10 + 5 = 34

 The optimal ordering is 312

Q.1(d) Implement binary search and derive its completely. 05
Ans.: Binary Search :
 Binary search technique is very fast and efficient. It requires the list of elements to be in

sorted order.

 In this method, to search an element we compare it with the element present at the

centre of the list. If it matches then the search is successful otherwise, the list is divided
into two halvesone from the 0th element to the centre element (first half), another
from the centre element to the last element (second half). As a result all the elements in
first half are samller than centre element whereas all the elements in second half are
greater than the centre element.

 The searching will now proceed in either of the two halves depending upon whether the

target element is greater or smaller than the centre element. If the element is smaller
than the centre element then the searching is done in the first half, otherwise it is done
in the second half.

 The process of comparing the required element with the centre element and if not

found then dividing the elements into two halves is repeated till the element is found or
the division of half parts gives one element.

0 1 2 9 10 11 15 20 46 72
 Sorted List for Binary Search

Prelim Paper Solution

 3 

 Let us take an array arr that consists of 10 sorted numbers and 46 is the element that is to be
searched. The binary search when applied to this array works as follows:

 (a) 46 is compared with the element present at the centre of list (i.e 10) since 46 is
greter than 10, the sorting is done in the second half of the array.

 (b) Now, 46 is compared with the centre element of the second half of the array (i.e.
20). Again, 46 is greater than 20, the searching will be done between 20 and the last
element 72.

 (c) The process is repeated till 46 is found or no further subdivision of array is possible.

 Binary Search can be analyzed with the best, worst, and average case number of

comparisons. These analyses are dependent upon the length of the array, so let N =
|arr| denote the length of the Array arr.

 Best case: O(1) comparisons
 In the best case, the item to be found ‘X’ (in our case, 46) is the middle in the array arr.

A constant number of comparisons (actually just 1) are required.

 Worst case: O(log n) comparisons
 In the worst case, the item X does not exist in the array arr at all. Through each

recursion or iteration of Binary Search, the size of the admissible range is halved. This
halving can be done ceiling (log n) times. Thus, ceiling (log n) comparisons are required.

 Average case: O(log n) comparsions
 To find the average case, take the sum over all elements of the product of number of

comparisons required to find each element and the probability of searching for that
element. To simplify the analysis, assume that no item which is not in arr will be searched
for, and that the probabilities of searching for each element.

Q.2(a) Explain how to find maximum and minimum value in an array using Divide and

Conquer.
10

Ans.: In this algorithm, the list of elements is divided at the mid in order to obtain two
sublists. From both the sublist maximum and minimum elements are chosen. Two
maxima and minima are compared and from them real maximum and minimum
elements are determined. This process is carried out for entire list. The algorithm is as
given below.

 Algorithm Max_Min_Val (i, j, max, min)
 //Problem Description : Finding min, max elements recursively.
 //Input : i, j are integers used as index to an array A. The max and min will
 //contain maximum and minimum value elements.
 //Output : None
 if (i = = j) then
 
  max  A [i]
 min  A [j]
 }
 else if (i = j1) then
 {

Vidyalankar : S.E.  AA

 4 

 if (A [i] < A [j]) then
 {
 max  A [j]
 min  A [i]
 }
 else
 {
 max  A [i]
 min  A [j]
 } //end of else
 } //end of if
 else
 {
 mid  (i+j) / 2 //divide the list handling two lists separately
 Max_Min_Val (i, mid, max, min)
 Max_Min_val (mid + 1, j, max_new, min_new)
 if (max < max_new) then
 max  max_new //combine solution
 if (min > min_new) then
 minmin_new //combine solution
 }

 Example : Consider a list of some elements from which maximum and minimum

element can be found out.
1 2 3 4 5 6 7 8 9

50 40  5  9 45 90 65 25 75
 Step 1 :

1 2 3 4 5
50 40  5  9 45 Sublist 1

6 7 8 9
90 65 25 75 Sublist 2

 We have divided the original list at mid and two sublists : Sublist 1 and sublist 2 are
created. We will find min and max values respectively from each sublist.

 Step 2 :

1 2 3 4 5
50 40 5 9 45 Sublist

6 7 8 9
90 65 25 75 Sublist

 Again divide each sublist and create further sublists. Then from each sublist obtain.

 Step 3:

1 2 3 4 5
50 40 5 9 45

Prelim Paper Solution

 5 

6 7 8 9
90 65 25 75

 It is possible to divide the list (50, 40,  5) further. Hence we have divided the list into
sublists and min, max values are obtained.

 Step 4 : Now further division of the list is not possible. Hence we start combining the

solutions of min and max values from each sublist.
1 2 3

50 40 5

 Combine (1, 2) and (3) Min = 5, Max = 50

1 2 3 4 6
50 40 5 9 45

 Combine (1, … 3) and (4, 5) Min = 9, Max = 50
 Now we will combine (1, … 3) and (4, 5) and the min and max values among them are

obtained. Hence, min value = 9
 max value = 50
 Step 5:

6 7 8 9
90 65 25 75

 Combine (6, 7) Min = 25, Max = 90

 Step 6:

1 2 3 4 5 6 7 8 9
50 40 5 9 45 90 65 25 75

 Combine the sublists (1, …. 5) and (6, ….9). Find out min and max values which are
 min = 9 max = 90

 Thus the complete list is formed from which the min and max values are obtained.

Hence final min and max values are
 Min = 9 and max = 90

 Analysis :
 There are two recursive calls made in this algorithm, for each half divided sublist.
 Hence, time required for computing min and max will be
 T(n) = T          n / 2 T n / 2 + 2 when n > 2
 T(n) = 1 when n = 2
 If single element is present in the list then T(n) = 0.

 Now, time required for computing min and max will be :
 T(n) = 2  





T n / 2 2

 = 2


 [2T(n / 4) 2] 2

Vidyalankar : S.E.  AA

 6 

 = 2(2 [2T(n / 8) + 2] +2) + 2
 = 8T(n / 8) + 10
 Continuing in this fashion a recursive equation can be obtained. If we put n = 2k then

 T(n) = 2k1T(2) +





k 1

i

i 1
2 = 2k1 + 2k  2

 T(n) = 3n / 22
 Neglecting the order of magnitude, we can declare the time complexity is O(n).

Q.2(b) Explain Strassen matrix multiplication. 10
Ans.: In 1969, Strassen published an algorithm whose time complexity is better than cubic in

terms of both multiplications and additions/subtractions. The following example
illustrates his method.

 Suppose we want the product C of two 2 × 2 matrices, A and B. That is,

 
 
 

11 12

21 22

c c
c c

=
   

   
   

11 12 11 12

21 22 21 22

a a b b
a a b b

.

 Strassen determined that if we let
 m1 = (a11 + a22) (b11 + b22)
 m2 = (c21 + a22) b11

 m3 = a11 (b12  b22)
 m4 = a22 (b21  b11)
 m5 = (a11 + a12) b22

 m6 = (a21  a11) (b11+b12)
 m7 = (a12  a22) (b21 + b22)
 the product C is given by

 C =
    

     
1 4 5 7 3 5

2 4 1 3 2 6

m m m m m m
m m m m m m

 In the exercises, you will show that this is correct.

 To multiply two 2 × 2 matrices, Strassen’s method requires seven multiplications and 18

additions/subtractions, whereas the straightforward method requires either
multiplications and four additions. We have saved ourselves one multiplication at the
expense of doing 14 additional additions or subtractions. This is not very impressive, and
indeed it is not in the case of 2 × 2 matrices that Strassen’s method is of value. Because
the commutativity of multiplications is not used in Strassen’s formulas, those formulas
pertain to larger matrices that are each divided into four submatrices. First we divide
the matrices A and B, as illustrated in figure . Assuming that n is a power of 2, the matrix
A11, for example, is meant to represent the following submatrix of A:

 
 
  

11 12

21 22

C C
C C =

   
   

      

11 12 11 12

21 22 21 22

A A B B
A A B B n/2

n/2

Prelim Paper Solution

 7 

 A11 =

 
 
 
 
 
 







11 12 1

21 22 2

n n

a a a ,n / 2
a a a ,n / 2

a / 2,1 a / 2,n / 2

 Using Strassen’s method, first we compute
 M1 = (A11 + A22) (B11 + B22)

 Where our operations are now matrix addition and multiplication. In the same way, we
compute M2 through M7. Next we compute

 C11 = M1 + M4  M5 + M7
 and C12, C21, and C22. Finally, the product C of a and B is obtained by combining the four

submatrices C13. The following example illustrates these steps.

 Suppose that A =

 
 
 
 
 
 

1 2 3 4
5 6 7 8
9 1 2 3
4 5 6 7

 B =

 
 
 
 
 
 

8 9 1 2
3 4 5 6
7 8 9 1
2 3 4 5

 Figures Illustrates of the partitioning in Strassen’s method. The computations proceed
as follows:

 M1 = (A11 + A22) × (B11 + B22)

 =
          

            
          

1 2 2 3 8 9 9 1
5 6 6 7 3 4 4 5

 =    
   

   

3 5 17 10
11 13 7 9

 
 
  

11 12

21 22

C C
C C =

   
   
      
   
      

1 2 3 4 8 9 1 2
5 6 7 8 3 4 5 6
9 1 2 3 7 8 9 1
4 5 6 7 2 3 4 5

 When the matrices are sufficiently small, we multiply in the standard way. In this

example, we do this when n = 2. Therefore,

 M1 =
   

   
   

3 5 17 10
11 13 7 9

 =
      

       

3 17 5 7 3 10 5 9
11 17 13 7 11 10 13 9

=
 
 
 

86 75
278 227

 After this, M2 through M7 are computed in the same way, and then the values of C11, C12,
C21, and C22 are computed. They are combined to yield C.

 Strassen’s algorithm is slightly faster than the general matrix multiplication algorithm.
The general algorithm’s time complexity is O(n3), while the Strassen’s algorithm is O(n2.8)

Q.3(a) Explain single source (Bellman Ford) Algorithm with an example. 10
Ans. : Algorithms Bellman and Ford algorithm to compute shortest paths
 Algorithm BellmanFord(v, cost, dist, n)

 2

2

Vidyalankar : S.E.  AA

 8 

 // Singlesource / alldestinations shortest
 // paths with negative edge costs
 {
 for i : = 1 to n do // Initialize dist.
 dist[i] : = cost[v, i];
 for k : =2 to n  1 do
 for each u such that u  v and u has
 at least one incoming edge do
 for each i,u in the graph do
 if dist[u] > dist[i] + cost[i, u] then
 dist[u] : = dist[i] + cost[i, u];
 }

 Example: Figure below gives a seven vertex graph, together with the arrays distk, k =

1,....,6. These arrays were computed using the equation just given. For instance, distk[1]
= 0 for all k since 1 is the source node. Also, dist1[2] = 6, dist1[3] = 5, and dist1[4] = 5, since
there are edges from 1 to these nodes. The distance dist1[] is  for the nodes 5, 6 and 7
since there are no edges to these from 1.

 dist2[2] = min {dist1[2], mini dist1[i] + cost[i, 2]}
 = min {6, 0 + 6, 5  2, 5 + ,  + ,  + ,  + } = 3

 Here the terms 0 + 6, 5  2, 5 + ,  + ,  + , and  +  correspond to a choice of i =

1, 3, 4, 5, 6, and 7, respectively. The rest of the entries are computed in an anglaogous
manner.

Q.3(b) Explain flowshop scheduling with example. 10
Ans.: A job, requires the performance of several distinct task, to be processed. In flow shop

use generally have n jobs each requiring m tasks T1i, T2i,....Tmi,
1  i  n, to be performed. The time required to complete task Tji is tji.

 A schedule for the n jobs is an assignment of tasks to time intervals on the processors.

Task Tji must be assigned to processor Pj. No processor may have more than one task
assigned to it in any time interval. Additionally, for any job i the processing of task Tji, j > 1,
cannot be started until task Tj1, I has been completed.

 Example : Two jobs have to be scheduled on three processors. The task times are given

by the matrix J

k
distk[1..7]

1 2 3 4 5 6 7
1 0 6 5 5   
2 0 3 3 5 5 4 
3 0 1 3 5 2 4 7
4 0 1 3 5 0 4 5
5 0 1 3 5 0 4 3
6 0 1 3 5 0 4 3

(b) distk

2 5

7

6

3

4

1

1

3

3

1

5

5

6

2 1

(a) A directed graph

2

Prelim Paper Solution

 9 

 J =
 
 
 
  

2 0
3 3
5 2

 Two possible schedules for the jobs are shown below in the figure in the

 A nonpreemptive schedule is a schedule in which the processing of a task on any

processor is not terminated until the task is complete. A schedule for which this need
not be true is called preemptive. The schedule for which this need not be true is called
preemptive. The schedule of Figure (a) is a preemptive schedule. Figure (b) shows a
nonpreemptive schedule. The finish time fi (S) of job i is the time at which all tasks of job
i have been completed in schedule S. In figure (a), f1(S) = 10 and f2(S) = 12. In Figure (b),
f1(S) = 11 and f2(S) = 5. The finish time F(S) of a schedule S is given by

 F(S) =
  i1 i n

max{f (S)}

 The mean flow time MFT (S) is defined to be

 MFT(S) =
 
 i

1 i n

1 f (S)
n

 An optimal finish time (OFT) schedule for a given set of jobs is a nonpreemptive
schedule S for which F(S) is minimum over all nonpreemptive schedules S. A preemptive
optimal finish time (POFT) schedule, optimal mean finish time schedule (OMFT), and
preemptive optimal mean finish (POMFT) schedule are defined in the similar way.

 Although the general problem of obtaining OFT and POFT schedules for m > 2 and of

obtaining OMFT schedules is computationally difficult dynamic programming leads to an
efficient algorithm to obtain OFT schedules for the case m = 2.

T11

T22 T21 T22

T31 T32

time 0 2 5 6 10 12

P1

P2

P3

(a)

T11

T22 T21

T32 T31

time 0 2 3 5 6 11

(b)

Vidyalankar : S.E.  AA

 10 

Q.4(a) Find the MCST (Minimum Cost Spanning tree)
of given graph.

10

Ans.: Consider the following graph :
 The following is the stages in Prim’s algorithm to find

the minimum cost spanning tree of the given graph.

 Edge Cost Spanning tree
 (1, 2) 10

 (2, 6) 25

 (2, 6) 15

 (6, 4) 20

 (1, 4) reject (cycle)

 (3, 5) 35

 The following is the stages in Kruskal’s algorithm to find the minimum cost spanning

tree of the same graph.

 Edge Cost Spanning tree

 (1, 2) 10

10 50

30

20

15
55

35

25

45
40

1

2
3

4

5

6

1 2

6 3
4

1 2

6 34

5

1 2

1 2

3

1 2

6 3

10 50

30

20

15
55

35

25

45
40

1

2
3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6

Prelim Paper Solution

 11 

 (3, 6) 15

 (4, 6) 20

 (2, 6) 25

 (1, 4) 30 (reject) (creating cycle)

 (3, 5) 35

Q.4(b) Explain 8 queens problem with reference to backtracking. 10
Ans.: Backtracking :
 Sometimes we are facing the task of finding an optimal solution to a problem, there is

no applicable theory to help us to find the optimum, except by resorting to exhaustive
search. So new systematic, exhaustive technique is used known as ‘backtracking’.

 In this technique a partial solution is derived at each step and validity of partial solution

is checked and if incorrect we backtrack and repair the solution.

 Examples: Chess, 8 queen problem, puzzle, tictactoe problem.
 Consider the puzzle of how to place eight queens on a chessboard, so that no queen can

attack another. One of the rule for chess is that, a queen can take another piece that lie
on the same row, same column, or the same diagonal as that of queen.

 The 8 queen problem is a classic combinatorial problem to place eight queens on an 8 

8 chessboard that no two queens are in direct positioning of attack i.e. no two queens
out of eight are on the same row, same column or diagonal. For solving above problem,
we are using a design in strategy known as backtracking.

 The chessboard has eight rows and eight columns.

 In this problem of 8queens, the solution can be expressed as (x1, x2, …..,x8), where x1 is

the position of Ist queen, x2 is the position at IInd queen and so on.

 Queens are numbered from 1 to 8 and without losing generally. We are assuming that Ist

Queen will be placed in 1st row, Queen II will be placed in 2nd row and so on.

 So x1 will be any value from 1 to 8, since there are eight columns in one row even x2 will

be having any value from 1 to 8 and so on.

1 2 5

4

6
3

1 2 3 4 5

6

1 2 3 5

4 6

1 2 5

4 6

3

Vidyalankar : S.E.  AA

 12 

 To solve the above problem, first we are finding a place for the first queen. Let it be 1.
i.e. x [1] = 1. Then we try to find the place of 2nd queen. Since queen I is directly placed
in 1st column the IInd Queen cannot be placed in 1st or 2nd column, otherwise there will
be a direct attack between Queen I and Queen II.

 Since we are placing Queen I in first column, so we have to place Queen II in column 3.

Therefore x[2] = 3.

 If we are not able to find a proper location for a queen then we will backtrack and try to

adjust the position of the previous queen. If it is not possible we will be backtrack once
again.

 There are many solutions to above problem, out of which two solutions are as shown
below.

 Fig. : Two configurations showing eight nonattacking queens

 Consider Simple example for four queens :
 Consider 4  4 chessboard and we have to place 4 Queens on it, such that there will no

direct attack between them. i.e. No two queens are in same row or same column or
diagonal.

 We are placing each queen in different rows. Since there are 4 Queens and 4 rows, so

we are placing each Queen in different rows.

 In 4 Queen problem, the solution can be expressed as (x1, x2, x3, x4) where x1 is the

position of Ist Queen, x2 will be the position of IInd Queen and so on.
 x1 will be having any value from 1 to 4 as there are 4 columns in a row.
 x2 will be having any value from 1 to 4 & so on.

 We are first placing the Ist Queen in 1st column. So the IInd Queen is going to place in 3rd

or 4th column, such that there should not be direct attack between Queen I and Queen
II.

Prelim Paper Solution

 13 

 The position is as shown below:
 1011 1012 1013 1014

row 1 ? ? ?

row 2 X X ?

row 3 X X X X

row 4
 (a) Dead end
 ‘?’ in above figure implies that one more position is possible for the queen to be place.

In above shown figure we are not getting the solution for placing 4 Queens on 4  4
boards so we will backtrack and try to adjust the position of IInd Queen.

 The figure can be shown as follows:
? ? ?

X X X

X X X

X X X X
 (b) Dead end

 Even in above figure (b) we are not able to find a proper locations for Queen so we will

backtrack. So for Queen III and Queen II, no other possibility of position. So we change
the position of Ist Queen.

X X X

X X X

 X X X

X X X
 (c) Solution (d) Solution

 The above figure (c) gives the perfect solution of 4 Queens on 4  4 board and no Queen
is direct attacking the other Queen.

 One more solution is possible which is as shown in figure (d).

 Algorithm :
 To find a proper position of queen we are using one procedure. PLACE
 int x[20];
 int place(int k)
 {
 int i=1,flag = 1;

 while (i<=k-1 && flag)
 if (x[i] == x[k] || abs(x[i]-x[k]) == abs(i-k))
 flag = 0;

Vidyalankar : S.E.  AA

 14 

 else
 i++;

 return flag;
 }
 void main()
 {
 int k,i;
 k=1; x[k] = 0;
 while (k > 0)
 {
 x[k]++;
 while (x[k] <= 8 && ! place(k))
 x[k]++;
 if (x[k] <= 8)
 {
 if (k == 8)
 {
 for (i=1;i<=8;i++)
 printf("%d ",x[i]);
 printf("\n");
 }
 else
 {
 k++;
 x[k] = 0;
 }
 }
 else
 k--; /* backtrack */
 }
 }

 Note : ABS (X [i]  X[K]) = ABS (i  k)
 using this we are checking whether the queen K is coming in diagonal with any of the

queens from 1 to K  1.
 X [i]   column position of ith queen.
 X[k]   column position of kth queen.
 i     row position of ith queen.
 k     row position of kth queen.

 The above function PLACE will return true if it can find out a proper place for kth queen

in the kth row of the 8  8 chess board. Otherwise it will return false.

 Sum of Subsets :
 Suppose n distinct positive numbers (sometimes called weights) is given. To find all

combinations of these numbers whose sum is m, is called sum of subsets problem.

Prelim Paper Solution

 15 

 A backtracking solution using fixed tuple size strategy can be considered. In this,
depending on whether the weight wi is included or not, the element xi of the solution
vector is either one or zero.

 The bounding functions is Bk (x1, …..xk) = true

 iff
  

  
k n

i i i
i 1 i k 1

w x w m

 If this condition is not satisfied x1,…..xk cannot lead to an answer node. If we assume the
wi’s are initially in nondecreasing order, the bounding functions can be strengthened.
In this case x1, …….xk can lead to an answer node if

 


 
k

i i k 1
i 1

w x w m

Q.5(a) Explain sum of subsets problem and its solution using backtracking. 10
Ans.: Sum of Subsets :
 Suppose n distinct positive numbers (sometimes called weights) is given. To find all

combinations of these numbers whose sum is m, is called sum of subsets problem.

 A backtracking solution using fixed tuple size strategy can be considered. In this,

depending on whether the weight wi is included or not, the element xi of the solution
vector is either one or zero.

 The bounding functions is Bk (x1, …..xk) = true

 iff
  

  
k n

i i i
i 1 i k 1

w x w m

 If this condition is not satisfied x1,…..xk cannot lead to an answer node. If we assume the
wi’s are initially in non-decreasing order, the bounding functions can be strengthened. In
this case x1, …….xk can lead to an answer node if

 


 
k

i i k 1
i 1

w x w m

 Recursive backtracking algorithm for sum of subsets problem:
 Algorithm SumOfSub(s, k,r)
 // Find all subsets of w[1 : n] that sum to m. The values of x[j],
 // 1  j < k, have already been determined. S = 


 k 1

j 1
w[j]*I[j]

 // and r =
n

j k
w[j] . The w[j]’s are in nondecreasing order.

 // It is assumed that w[1]  m and


n

i 1
w[i] m.

 {
 // Generate left child. Note: s + w[k]  m since Bk  1 is true.
 x[k] : = 1;
 if (s + w[k]= m) then write (x[1 : k]); // Subset found
 // There is no recursive call here as w[j] > 0, 1  j  n.
 else if (s + w[k] + w[k + 1]  m)
 then SumOfSub(s + w[k], k + 1, r  w[k]);

Vidyalankar : S.E.  AA

 16 

 // Generate right child and evaluate Bk.
 if ((s + rw[k]  m) and (s + w[k + 1]  m)) then
 {
 x[k] : = 0;
 SumOfSub(s, k + 1, r  w[k]);
 }
 }

Q.5(b) Explain 15 puzzle problem with respect to branch and bound. 10
Ans.: The 15puzzles: An Example

 The 15puzzle (invented by Sam Loyd in 1878) consists of 15 numbered tiles on a square

frame with a capacity of 16 tiles (Figure 1). We are given an initial arrangement of the
tiles, and the objective is to transform this arrangement into the goal arrangement of
Figure 1(b) through a series of legal moves. The only legal moves are ones in which a tile
adjacent to the empty spot (ES) is moved to ES. Thus from the initial arrangement of
Figure 1(a), four moves are possible. We can move any one of the tiles numbered 2, 3, 5,
or 6 to the empty spot. Following this move, other moves can be made. Each move
creates a new arrangement of the tiles. These arrangements are called the states of the
puzzle. The initial and goal arrangements are called the initial and goal states. A state is
reachable from the initial state if there is a sequence of legal moves from the initial
state to this state. The state space of an initial state consists of all states that can be
reached from the initial state. The most straightforward way to solve the puzzle would
be to search the state space for the goal state and use the path from the initial state to
the goal state as the answer. It is easy to see that there are 16! (16!  20.9  1012)
different arrangements of the tiles on the frame. Of these only onehalf are reachable
from any given initial state. Indeed, the state space for the problem is very large. Before
attempting to search this state space for the goal state, it would be worthwhile to
determine whether the goal state is reachable from the initial state. There is a very
simple way to do this. Let us number the frame positions 1 to 16. Position i is the frame
position containing tile numbered i in the goal arrangement of Figure 1(b). Position 16 is
the empty spot. Let position (i) be the position number in the initial state of the tile
numbered i. Then position (16) will denote the position of the empty spot.

 For any state let less (i) be the number of tiles j such that j < i and position (j) > position

(i). For the state of Figure 1 (a) we have, for example, less (1) = 0, less (4) = 1, less (12) = 6.
Let x = 1 if in the initial state the empty spot is at one of the shaded positions of Figure
1(c) and x = 0 if it is at one of the remaining positions.

Fig. 1: 15puzzle arrangements

1 3 4 15
2 5 12
7 6 11 14
8 9 10 13

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

(a) An arrangement (b) Goal arrangement (c)

Prelim Paper Solution

 17 

Q.6 Write short notes on : 20
Q.6(a) Write short note on Rabbin Karp string matching algorithm. 05
Ans.: The Rabin-Karp algorithm :
 The Rabin-Karp algorithm is a string searching algorithm created by Michael O. Rabin

and Richard M. Karp that seeks a pattern, i.e. a substring, within a text by using hashing.
It is not widely used for single pattern matching, but is of considerable theoretical
importance and is very effective for multiple pattern matching. For text of length n and
pattern of length m, its average and best case running time is 0(n), but the (highly
unlikely) worst-case performance is 0(nm), which is one of the reasons why it is not
widely used. However, it has the unique advantage of being able to find any one of k
strings or less in 0(n) time on average, regardless of the size of k.

 One of the simplest practical applications of Rabin-Karp is in detection of plagiarism.

Say, for example, that a student is writing an English paper on Moby Dick. A cunning
professor might locate a variety of source material on Moby Dick and automatically
extract a list of all sentences in those materials. Then, Rabin-Karp can rapidly search
through a particular paper for any instance of any of the sentences from the source
materials. To avoid easily thwarting the system with minor changes, it can be made to
ignore details such as case and punctuation by removing these first. Because the
number of strings we're searching for, kt is very large, single-string-searching algorithms
are impractical.

 The naive algorithm basically consists of two nested loops—the outermost loop runs

through all the n  m + 1 possible shifts, and for each such shift the innermost loop runs
through the m characters seeing if they match. Rabin and Karp propose a modified
algorithm that tries to replace the innermost loop with a single comparison as often as
possible.

 Features of Rabin-Karp algorithm :
  Rabin-Karp algorithm uses a hashing function.
  Preprocessing phase of Rabin-Karp algorithm in 0(m) time complexity and constant

space.
  Searching phase of Rabin-Karp algorithm in 0(mn) time complexity.
  It uses 0(n + m) expected running time.

Q.6(b) Write short note on LCS (Longest Common Subsequence). 05
Ans.: LCS (Longest Common Subsequence) :
 Given two strings X and Y of lengths n and m respectively, we have to find the longest

common subsequence. Subsequence of X is any string of the form X(i1) X(i2) X(i3) … X(ik),
ij < ij+1 for j = 1, 2, ….k  1. Subsequence is a sequence of characters that are not
necessarily contiguous but are taken in order. Suppose X = “aabcdafacd”, then “acded”
is a subsequence of X. Substring is a subsequence if i2  i1 = i3  i2 = i4  j3 = … = ik  ik1 =
1. The problem we are interested here is to find the longest string S that is a
subsequence of both X and Y. The brute-force approach for this problem yields and
exponential algorithm. By using dynamic programming. We can solve the problem
much faster.

Vidyalankar : S.E.  AA

 18 

 Let L(i, j) be the length of the longest common subsequence of both X(0)X(1) ... X(i) and
Y(0)Y(1) … Y(j). We distinguish between two case.

 1. The last character is the same in the two strings, that is X(i) = Y(j) = ‘c’. The longest
common subsequence of X(0)X(1) … X(i) and Y(0)y(1) … Y(j) ends with ‘c’. So we
write: L(i, j) = L(i  1, j  1) + 1

 2. The last characters are different in the two strings, that is X(i)  Y(j). In this case the
common subsequence ends with X(i) or Y(j) or none of these. So we write:
 L(i, j) = max{L(i  1, j), L(i, j  1)}

 For Example, to make sense in the boundary cases when i = 0 or j = 0. We write:
 L(i, 1) = 0 for i = 1, 0, …., n  1 and L(1, j) = 0 for j = 1, …, m  1.

 The problem satisfies the principle of optimality. We cannot have the longest common

subsequences without also having the longest common subsequences for the sub-
problems. We give pseudocode for the problem based on the above formulation.

 Procedure LCSS (X, Y, n, m)
 Character Array X(n), Y(m)
 For i = 1 to n  1 Do
 L(i,  1) = 0;
 Endfor
 For j = 1 to m  1 Do
 L(1, j) = 0;
 Endfor
 For i = 0 to n  1 Do
 For j  0 to m  1 Do
 If x(i) = Y(j) Then
 L(i, j) = L(i  1, j  1) + 1;
 Else
 L(i, j) = Max{L(i  1, j), L(i, j  1)};
 Endif
 Endfor
 Endfor
 End LCSS

 The time complexity of the above procedure is dominated by the two nested for loops.

The if statement within the nested loop requires constant time and so the time
complexity of the algorithm is 0(length(X) times length(Y)) = 0(nm).

 Example : Find the longest common subsequence of X = 'aabcdacdbb’. Y = 'abacdabd'

using dynamic programming.

 Using Table below we find that the common longest subsequence has length 6. To find a

longest subsequence we work hack through the table. We start with L(n – 1, m 1), that
is, with the cell (9, 7). We find that the characters are different. We can now move to
either the cell (9, 6) or the cell (8, 7). We examine the cell (9, 6) and find that the
common character is b. So the last character of a longest common subsequence is b.

Prelim Paper Solution

 19 

From the cell (9, 6), we move to the cell (8, 5) and find that the characters are different.
We can now move to the cell (8, 4) or the cell (7, 5). If the characters corresponding to a
cell (i, j) are identical, then we move to cell (i  1, j  1); otherwise to the cell (i  1, j) or
(i , j  1) whichever is having the greater value. The possible traces through the table for
the example strings are shown in the directed graph of Figure 1. The algorithm produces
five longest common subsequences each of length 6: abacdb. abcdab. aacdab,. aacdad,
abcdad as shown in Figure 1.

 Table : Finding the length of the longest common subsequence

L
1

a
0

b
1

a
2

c
3

d
4

a
5

b
6

d
7

1 0 0 0 0 0 0 0 0 0
a
0

0 1 1 1 1 1 1 1 1

a
1

0 1 1 2 2 2 2 2 2

b
2

0 1 2 2 2 2 2 3 3

c
3

0 1 2 2 3 3 3 3 3

d
4

0 1 2 2 3 4 4 4 4

a
5

0 1 2 3 3 4 5 5 5

c
6

0 1 2 3 4 4 5 5 5

d
7

0 1 2 3 4 5 5 5 6

b
8

0 1 2 3 4 5 5 6 6

b
9

0 1 2 3 4 5 5 6 6

Vidyalankar : S.E.  AA

 20 

Q.6(c) Write short note on Merge sort and its complexity. 05
Ans.: Merge sort is based on the divide-and –conquer paradigm. Its worst-case running time

has a lower order of growth than insertion sort, Since we are dealing with sub-problems,
we state each sub-problem as sorting a sub-array A[p .. r]. Initially, p = 1 and r = n, but
these values change as we recurse through sub-problems.

 To sort a[p .. r]:

 Step 1 : Divide Step
 If a given array A has zero one element, simply return; it is already sorted. Otherwise,

split A[p .. r] into two sub-arrays A[p .. q] and A[q + 1 .. r], each containing about half of
the elements of A[p .. r]. That is, q is the halfway point of A[p ..r].

 Step 2 : Conquer Step
 Conquer by recursively sorting the two sub-arrays A[p .. q] and a[q + 1 .. r].

b

d

c

a

b

a a

c

d

a

d

a

Fig. : Finding the longest common sub-sequences

Prelim Paper Solution

 21 

 Step 3 : Combine Step
 Combine the elements back in A[p .. r] by merging the two sorted sub-arrays

A[p .. q] and A[q + 1 .. r] into a sorted sequence. To accomplish this step, we will define a
procedure MERGE (A, p, q, r).

 Note that the recursion bottoms out when the sub-array has just on element, so that it
is trivially sorted.

 Algorithm for Merge Sort :
 To sort the entire sequence A[1 .. n], make the initial call to the procedure MERGE-SORT

(A, l, n).

 MERGE-SORT(A, p, r)
 1. IF p < r // Check for base case
 2. THEN q = FLOOR[(p + r)/2] // Divide step
 3. MERGE (A, p, q) // Conquer step.
 4. MERGE (A, q + 1, r) // Conquer step.
 5. MERGE (A, p, q, r) // Conquer step.

 Example: Bottom-up view of the above procedure for n = 8.

 Merging :
 What remains is the MERGE procedure. The following is the input and output of the

MERGE procedure.

 INPUT: Array A and indices p, q, r such that p  q  r and sub-array A[p .. q] is sorted and

sub-array A[q + 1 .. r] is sorted. By restrictions on p, q, r, neither sub-array is empty.
 OUTPUT: The two sub-arrays are merged into a single sorted sub-array in A[p .. r].
 We implement it so that it takes (n) time, where n = r  p + 1, which is the number of

elements being merged.

 Complexity: The complexity of merge sort is O(N log N) in the best case/worst

case/average case.

Vidyalankar : S.E.  AA

 22 

Q.6(d) Write short note on Proof of vertex cover problem as NP problem. 05
Ans.: DVC NP
 Vertex Cover: A vertex cover of a graph G is a set of vertices such that every edge in G is

incident to at least one of these vertices.

 Decision Vertex Cover (DVC) Problem: Given an undirected graph G and an integer k,

does G have a vertex cover with k verticals.

 Claim: DVC  NP.
 Proof: A certificate will be a set C of  k verticals. The brute force method to check

whether C is a vertex cover takes time O (Ke). As Ke  (n + e)2, the time to verify is O ((n +
e)2). So a certificate can be verified in polynomial time.

    

Find a vertex cover of G of size twoa

b

c

f

d

e

