UNIVERSITY OF MUMBAI

Bachelor of Engineering

Production Engineering

Third Year (Sem. V)

Revised Syllabus (REV- 2012) w. e. f. Academic Year 2014 - 15 and 2015-2016 respectively

Under

FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)
Program Structure for B. E. Production Engineering

T. E. (Production) Sem.-V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme (Contact Hours)</th>
<th>Credits Assigned</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Pract.</td>
<td>Theory</td>
</tr>
<tr>
<td>PEC501</td>
<td>Computer Aided Design and Finite Element Analysis</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PEC502</td>
<td>Metrology and Instrumentation</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PEC503</td>
<td>Design of Jigs and Fixtures</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PEC504</td>
<td>Machining Science and Technology</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PEC505</td>
<td>Engineering Design</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PEC506</td>
<td>Thermal Engineering</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PEL501</td>
<td>Business Communication and Ethics #</td>
<td>--</td>
<td>2*+2</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>19</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Internal Assessment</th>
<th>Term Work</th>
<th>Pract/ Oral</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test1</td>
<td>Test2</td>
<td>Avg.</td>
<td>End Sem. Exam.</td>
</tr>
<tr>
<td>PEC501</td>
<td>Computer Aided Design and Finite Element Analysis</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>PEC502</td>
<td>Metrology and Instrumentation</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>PEC503</td>
<td>Design of Jigs and Fixtures</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>PEC504</td>
<td>Machining Science and Technology</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>PEC505</td>
<td>Engineering Design</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>PEC506</td>
<td>Thermal Engineering</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>PEL501</td>
<td>Business Communication and Ethics #</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>--</td>
<td>--</td>
<td>120</td>
<td>480</td>
</tr>
</tbody>
</table>

* Theory for entire class is to be conducted
* Common for all engineering programs
Objectives
1. To introduce the concepts of computer aided engineering for design & manufacture.
2. To impart knowledge on computer graphics, which are used in diverse areas of engineering.
3. To provide basic knowledge of the finite element analysis.

Outcomes: Learner will be able to…
1. Illustrate software configuration of graphic packages.
2. Demonstrate use of Computer graphics in design.
3. Solve physical and engineering problems with emphasis on Structural and Thermal Engineering applications.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Computer Aided Design
Introduction: Need and Utility of CAD systems in industry, Product Cycle, Definition of CAD tools based on their constituents and implementation in a design environment.
CAD Hardware: Types of systems, system considerations, I/O devices, Hardware Integration & Networking</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Computer Graphics
Pixel plotting, Scan conversions of lines & circuits, 2D & 3D transformation, 2D Viewing and clipping. Parallel Projection. Elementary treatment of Hidden lines and surfaces. Cubic spines Bezier curves & B-spines, Animation and Color models.</td>
<td>14</td>
</tr>
<tr>
<td>03</td>
<td>Solid Modeling
Types of representation of solid models, interactive tools available with solid modeling software’s. Introduction to surface modeling.
CAD DATA Exchange: File Structure and format of IGES, STEP and DXF</td>
<td>05</td>
</tr>
<tr>
<td>04</td>
<td>Finite Element method
Introduction: General procedure of finite element method. Applications to structural analysis and Manufacturing processes.
Static Analysis
Formulation: Based on Principal of stationary total potential 1-D FEA: Generic form of FE equations for linear & quadratic bar and Beam Elements.
2-D FEA: Dimensionality of a problem, simple three nodded triangular elements and four nodded rectangular elements. Natural coordinates and coordinate transformation. 2D element formulation for structural analysis to derive Stress displacement and Stress strain matrix. Numerical integration by Gauss quadrature method, Meshing and Compatibility of elements. Incorporation of boundary conditions and solution of static equations.</td>
<td>18</td>
</tr>
<tr>
<td>05</td>
<td>Introduction to Dynamic
Thermal analysis and computational Fluid Dynamics FEM and Dynamic Analysis using FEM (No numerical problems). Equations of motion and formulation of F.E. equations using 1D element for vibration problems (Introductory).</td>
<td>05</td>
</tr>
</tbody>
</table>
List of Exercises

1. Exercises in Modeling and drafting of Mechanical Components - using Parametric and feature based Packages like PRO-E / SOLID WORKS /CATIA / NX etc.
2. Analysis of Mechanical Components – Use of FEA Packages like ANSYS/NASTRAN etc. Exercises shall include analysis of Machine elements under Static loads.

Term Work

Term work shall consist of at least one assignment from each module of syllabus and minimum six exercises to be conducted and presented with inferences on topics from syllabus.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiment/ programs and journal) : 10 marks
- Assignments: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper, weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References

1. CAD/CAM, Groover and Zimmers
2. CAD Principles and Applications, Barr, Krimger and Lazaer
3. CAD/CAM Handbook, Teicholz
6. Computer graphics principles & practices, Foley, Wan Dam, Feiner and Hughes, Pearson Education.
9. CAD / CAM, P.N. Rao, Tata-Mcgraw- Hill.
10. Mathematical and Procedural Elements for computer graphics, Roger and Adams
13. FEM, Fagan.
Objectives
1. To acquaint with principles of precision measuring instruments & their significance.
2. To familiarize handling & use of precision measuring instruments/ equipments.

Outcomes: Learner will be able to…
1. Handle & operate precision measuring instruments/ equipments.
2. Analyze simple machined components for dimensional stability & functionality.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction to metrology: Need for inspection, precision and accuracy, fundamental principles and definition, standards of measurement, line end and wave length standards, primary and Tertiary standards.</td>
<td>04</td>
</tr>
<tr>
<td>02</td>
<td>Limits, fits and Tolerances of interchangeable manufacture, allowance and tolerance, limits and fits, hole based and shaft based systems IS 919 : 1963 tolerance grades IT 01 to IT 05, types of fits, general requirements of go & NO GO gauging, Taylor’s principle, Design of go & no go gauges.</td>
<td>06</td>
</tr>
<tr>
<td>03</td>
<td>Comparators: Need for comparators, amplifying system, mechanical, mechanical-optical, electrical, electronic and pneumatic comparators, principle, construction and operation of various comparators, advantages, limitations and application of above comparators.</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>Interferometer: Principles of interface, monochromatic source, concept of flatness, flatness testing, optical flats, interference patterns and their significance, optical interferometer, laser interferometer. Surface texture Measurement: Profile geometry, importance of surface condition, roughness and waviness, definition and significance of terms, band width selection, and roughness standard specifying surface roughness parameters. Ra Ry RZ etc. RMS value, surface roughness measuring instruments such as Tomlinson surface meter. Taylor Hobson Talysurf, Measuring Surface roughness, symbols.</td>
<td>07</td>
</tr>
<tr>
<td>05</td>
<td>Measurement of Screw Threads: types of screw threads, definitions, measurement of major and pitch diameter, Two wire and three wire methods, floating carriage micrometer and their applications. Measurement and gauging of gears: types of gears, gear terminology and standard proportions: pitch circles diameter, circular pitch, diametral pitch and module, base pitch, addendum, dedendum, circular pitch, tooth thickness and width, base tangent method, gear tooth comparator, gear measurement using rollers, master gears and Parkinson tester.</td>
<td>10</td>
</tr>
<tr>
<td>06</td>
<td>Special Measuring Machine and Methods: Profile Projector, 3D coordinate measuring machine, Tool Maker’s Microscope. Mechanical Measurements and instrumentation: Transducers (applications only) for measurement of Displacement, velocity, acceleration, force, torque, temperature and fluid flow.</td>
<td>05</td>
</tr>
</tbody>
</table>
List of Experiments
1. At least one experiment on GEOMETRIC FEATURES.
2. At least one experiment on ANGULAR MEASUREMENTS.
3. At least one experiment on COMPARATORS
4. At least one experiment on INTERFEROMETRY
5. At least one experiment on THREAD MEASUREMENT
6. At least one experiment on GEAR MEASUREMENT.

Term Work
Term work shall consist of at least 1 assignment on each module from syllabus and minimum 06 experiments as per above list to be conducted and presented with inferences.

The distribution of marks for term work shall be as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory work (Experiment/ programs and journal)</td>
<td>10</td>
</tr>
<tr>
<td>Assignments</td>
<td>10</td>
</tr>
<tr>
<td>Attendance (Theory and Practical)</td>
<td>05</td>
</tr>
</tbody>
</table>

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Practical/Oral examination
1. Practical examination shall be conducted based on the list of experiments. Examination shall be based on actual handling of instruments and accurate measurement of given parameters.
2. Examiners are expected to evaluate learners’ skill of handling the Instruments and accurate measurement of asked parameters and conduct oral based on the syllabus.
3. The distribution of marks for practical/oral examination shall be as follows:
 i. Practical performance …… 15 marks
 ii. Oral …………………………….10 marks
4. Students work along with evaluation report to be preserved till the next examination

Theory Examination
In question paper, weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References

1. Metrology, Shotbolt
4. Experimental Methods for engineers, J.P. Holman.
5. Instrumentation Devices and System, C.S. Rangan, G.R. Sarma, V.S. Mani, TMH.
6. Industrial Instrumentation and Control, S.K. Singh, TMH.
Objectives
1. To acquaint with concepts pertaining to planning and sequencing of operations.
2. To develop capability to identify and select location and clamping faces/points on jobs.
3. To develop capabilities of designing simple productive and cost effective jigs and fixtures.

Outcomes: Learner will be able to…
1. Demonstrate concepts pertaining to planning and sequencing of operations
2. Identify and select location and clamping faces/points on jobs.
3. Design and develop simple productive and cost effective jigs and fixtures.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | **Introduction to Tool Design**
Production Tooling’s(Jigs, Fixtures, Dies etc)and their difference, their Requirement(accuracy, machinability, quantity modifications so as to assist production, Interchange ability, Simplicity, Swarf disposal, Handling, Ease of operation, Skill reduction, Cost reduction). Analysis for Operation planning, sequencing of operations. | 05 |
| 02 | **Basic Construction of Jig & Fixture**
2.1 Location & Locating Devices
Locating principles: Degrees of freedom, Redundant location, Fool proofing, nesting.
Locators: locators that control work piece from flat surfaces, location from cylindrical surfaces, conical locators, centralizers.
2.2 Clamping & clamping Devices
Requirement of clamping system, Position of clamps. Design of clamps.
Clamping devices; examples of typical clamps(multiple clamping and equalizing devices, quick acting clamping mechanisms such as link, toggle, cam, eccentric, pneumatic, hydraulic and electric devices). Component distortion under clamping and cutting forces.
Material used for different elements of jigs/fixture and recommended hardness where necessary. | 12 |
| 03 | **Construction of Drill Jig**
Introduction, Selection of location, supporting and clamping faces /points choice, cutting tools and means of guiding and supporting Jigs, various types of Jig Bushes, Commonly used drill jigs. Case Study on Drill Jig Design. | 05 |
| 04 | **Construction of Milling fixture**
Introduction, Selection of location, supporting and clamping faces /points choice, Tool setting & cutter guiding (Tennons & Setting block). Case Study on Milling Fixture Design. | 05 |
| 05 | **Introduction to Commonly used Fixtures**
Turning Fixture (Chucks, collets, Mandrels) Grinding Fixture, Broaching Fixture, and Welding & Assembly of Jig / Fixture. | 05 |
| 06 | **Indexing Jig & Fixture**
Term Work
Term work shall consist of at least one assignment on each module and minimum two different designs and development of jigs and fixtures assembly (drill jig and milling fixture). The drawings for jigs and fixtures should contain all the tolerances and materials including heat treatment.

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiment/ programs and journal): 10 marks
- Assignments: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Practical/Oral Examination
Each student will be given a small task of design based on syllabus, which will be assessed/verified by examiners during the oral examination.

The distribution of marks for oral-practical examination shall be as follows:
- Design Task 15 marks
- Oral 10 marks

1. Evaluation of practical/oral examination to be done based on the performance of design task.
2. Students work along with evaluation report to be preserved till the next examination.

Theory Examination
In question paper, weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References
3. Jigs and Fixture, P.H. Joshi, THM.
4. Tool design, C. Donaldson, George H. Lecain, V.C. Goold, THM.
6. Jigs and Fixture, ASTME.
Course Code	Course/Subject Name	Credits
PEC504 | Machining Science And Technology | 3+1

Objectives
1. To familiarize with the basic concepts of machining science.
2. To acquaint with various single and multipoint cutting tools designing processes.
3. To make the students understand the economics of machining processes.

Outcomes: Learner should be able to…
1. Calculate the values of various forces involved in the machining operations.
2. Design various single and multipoint cutting tools.
3. Select an appropriate tool material for a particular machining application.
4. Estimate machining performance measures like power requirement, cutting time, tool life and surface finish.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | **1.1 Metal Cutting Theory:** Orthogonal and oblique cutting, various types of chips, Mechanics of orthogonal steady state metal cutting, shear plane and shear plane angle, Merchant’s circle of forces, velocity relations. Merchant’s theory & modified theory of metal cutting. Concept of specific power consumption in machining.
1.2 Dynamometry: Dynamometer requirements, force measurement, electric transducers, strain gage lathe dynamometer, strain rings, milling dynamometer, drilling dynamometer, surface grinding dynamometer, piezoelectric dynamometry.
1.3 Surface Integrity and Cutting fluids: Measurement and specification of surface finish, primary cutting edge finish, fracture roughness, BUE formation and its influence on finish, secondary cutting edge finish, geometrical contribution to roughness, edge finishing and residual stress. Function of coolant, types of coolants, choice of coolants for various machining processes. Vapors and mist, cryogenic cooling and dry machining.
1.4 Materials for cutting tools: Properties of cutting tool materials. Major tool material types. Plain carbon steel, high speed steel, cast alloys, cemented tungsten carbide, titanium carbides, ceramic and cermet tools, synthetic diamond, polycrystalline diamond (PCD), cubic boron nitride (CBN), coated tools. | 11 |
| 02 | **Tool life and machining economics:** Definition, flank wear and crater wear, criteria for tool failure, effect of cutting parameters and tool geometry on tool life. Taylor’s tool life equation. Experimental methods to find Taylor exponents. Components of product cost. Optimum cutting velocity for minimum cost of production and maximum production rate. | 05 |
| 03 | **Design of single point cutting tools:** Different systems of tool nomenclature like MRS, ORS and NRS. Interrelationship among different systems of nomenclature for tool angles. Constructional features of solid tool, tipped tools, mechanically held regrind able insert type tools and throw away tip type tools. Design of shanks, cutting tip and chip breakers for HSS and Carbide tools. ISO coding system for tipped tools and tool holders. | 05 |
04 Design of Form Tools and broaches: Various types such as flat form tool, tangential form tool, circular form tool, constructional details and fields of application. Profile design of flat and circular form tools. Broach nomenclature, design steps for circular pull type, key way and spline broaches.

05 Design of hole making tools
5.1 Drills: Constructional features of two fluted drills, nomenclature, choice of point angle, helix angle for different machining conditions. Rake and clearance angles in drills, web thinning and margin relieving. Design of twist drill.
5.2 Reamers: Constructional features of hand reamer, machine reamer, adjustable reamer, expansion reamer, carbide tipped and insert type. Design of machine reamer.
5.3 Taps: Constructional features of hand taps and machine taps. Design of serial taps.

06 Design of gear milling cutters: Types of gear milling cutters, standard set of cutters, limitations on accuracy, design of form disc type, end mill type and gear hobbing cutters.

Term Work
Term work shall consist of at least five numerical problems on metal cutting and minimum 5 Design sheets based on module numbers 4, 5 and 6.

The distribution of marks for term work shall be as follows:
- Laboratory work (Experiment/ programs and journal): 10 marks
- Assignments: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination
In question paper, weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.
References

Objectives
1. To study basic principles of engineering design.
2. To acquaint with the concepts of strength design related to various components.
3. To familiarize with the use of design data books & various codes of practice.
4. To make conversant with preparation of working drawings based on designs.

Outcomes: Learner will be able to…
1. Demonstrate understanding of various design considerations.
2. Apply basic principles of machine design.
3. Design machine elements on the basis of strength concept.
4. Use design data books and various standard codes of practices.
5. Acquire skill in preparing production drawings pertaining to various designs.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | 1.1. Introduction - Steps involved in designing, types of designs, considerations in designing, Design–manufacturing interface, material selection, factor of safety and its implications.
1.2. Operational Joints - Introduction to cottered, pinned & threaded joints, & their applications.
1.2.1. Design of cottered joints- socket & spigot type, sleeve & cotter type, jib & cotter type.
1.2.2. Design of pin joints- Knuckle joints, suspension links, etc.
1.2.3. Design of threaded joints- Turn Buckle. | 08 |
| 02 | Design of machine elements subjected to eccentric loading
2.1. Determination of stresses in machine components with various cross sections. Circular, rectangular, triangular, trapezoidal, T & I sections subjected to direct & bending stresses. (Including stresses at critical sections)
2.2. Stresses in curved members- Design of crane hooks & C-clamps with various cross sections (Circular, triangular, square, rectangular, trapezoidal) (Circular & oval rings to be excluded). | 06 |
| 03 | Design of Shafts, Keys & Couplings
3.1. Design of shafts
3.1.1. Design of shafts on the basis of strength. Shafts subjected to bending alone, Torsion alone, combined action of torsion & bending, combined action of torsion & axial loads, line shafts.
3.1.2. Concepts about design of shafts based on rigidity (lateral & torsional rigidity), Implications.
3.2. Design of keys
3.2.1. Different types of keys and applications. Fitting of keys.
3.2.2. Stresses in keys and design of key dimensions.
3.3. Design of couplings:
3.3.1. Classification of couplings & application areas.
3.3.2. Design of flanged couplings, muff couplings, marine type coupling, bushed pin type flexible coupling. | 06 |
04 Design of Gears
4.1 Types & classification of gears, applications areas, gear materials of manufacture, mounting of gears.
4.2 Design of spur gears-simple gear calculations, Design of spur gears based on beam strength & wear. W. Lewis’ & Buckingham’s equation.

05 Design of bolted, welded & rivetted joints:
5.1 Design of bolted joints- stresses in bolts, joints for leak proof fluid tight applications (like cylinder to cylinder cover fastening in an IC engine) bolts of uniform strength.
5.3 Design of rivetted joints- Type of rivets and rivetted joints. Failure modes of rivetted joints & efficiency of rivetted joints. Design of rivetted joints for riveting longitudinal & circumferential seams of pressure vessels. Familiarization of Indian Boiler Regulation (IBR)
5.4 Design of bolted, rivetted & welded joints subjected to eccentric loading.

06 Design of Springs: Classification and applications, design of helical compression and tension springs, co–axial springs. Design of leaf springs–straight and semi elliptical laminated leaf springs. Strain energy of springs–design of buffer springs.
6.2 Design of Pressure Vessels: Design concepts of thick and compound cylinders, Stresses in thick & compound cylinders. Determination of wall thickness, hoop and radial stresses, nature of hoop and radial stress distribution on cylinder walls.

List of Assignments
Design exercises in the form of design calculations with sketches and or drawings on following machine system
1. Cotter joint/ Knuckle joint/Turn buckle
2. Shaft, Keys and Couplings
3. Gears
4. Bolted/ Riveted/Welded Joints

Term Work
Term work shall consist of
A. Minimum 3 design exercises from the list which may include computer aided production drawing on A3 size sheets
B. At least one design assignment from each module of syllabus

The distribution of marks for term work shall be as follows:
- Part A : 10 marks
- Part B : 10 marks
- Attendance (Theory and Practical) : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.
Internal Assessment
Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Practical/Oral Examination
Each student will be given a small task of design based on syllabus, which will be assessed/verified by examiners during the oral examination.
The distribution of marks for oral-practical examination shall be as follows:

<table>
<thead>
<tr>
<th>Task</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Task</td>
<td>15</td>
</tr>
<tr>
<td>Oral</td>
<td>10</td>
</tr>
</tbody>
</table>

1. Evaluation of practical/oral examination to be done based on the performance of design task.
2. Students work along with evaluation report to be preserved till the next examination.

Theory Examination
In question paper, weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

NOTE:
Use of standard design data books like PSG Data Book, Design Data by Mahadevan is permitted at the examination and shall be supplied by the college.

References
4. Design of machine elements, M.F. Spotts, PHI
7. Design of machine elements, Faires- Macmillan
8. PSG Design data book, PSG publication.
Course Code	**Course/Subject Name**	**Credits**
PEC506 | **Thermal Engineering** | 3+1

Objectives
1. To adopt a problem solving approach and be able to apply theory to practice in familiar and unfamiliar situations.
2. To develop an understanding of the principles of thermodynamic cycles, applied to engineering processes, power and refrigeration systems.
3. To develop a body of knowledge in the field of Thermodynamics and Heat Transfer.

Outcomes: Learner will be able to…
1. Conduct thermal engineering experiments as well as analyze and interpret data.
2. Identify, formulate, and solve engineering problems related to Thermal engineering.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 01 | **Reciprocating Air Compressors**
Classification, Terminology, Work and power calculations with and without clearance for single and two stage compression, volumetric efficiency and FAD, Intercooling and advantages of Multistage compression. | 05 |
| 02 | **Gas Turbines**
Classification, Application, open cycle and closed cycle gas turbine. Calculation of thermal efficiency. Methods for improvements of thermal efficiency of gas turbine plants (Numericals only on calculating thermal efficiency and work ratio). | 05 |
| 03 | **I.C. Engines**
Classification, components of engines, 2 stroke and 4 stroke engine, SI & CI engine. Study of simple carburetor, fuel injection systems, ignition system, combustion process in SI and CI engines, Cooling and lubrication systems. Testing & Performance of IC engines and Heat Balance Sheet. | 08 |
| 04 | **Heat Transfer**
Modes of heat transfer, Fouriers Law of heat conduction Newtons law of cooling.
Conduction: thermal conductivity, heat transfer coefficient(convective and overall), 1D steady state heat conduction through plane wall, composite wall, hollow cylinder and hollow sphere.
Convection: Free and Forced convection.
Radiation: Stefan Boltzman’s Law, Kirchoff’s Law, Weins law.
Heat Exchangers: classification, LMTD (Numericals only on 1D conduction and calculation of LMTD). | 08 |
| 05 | **Refrigeration**
Applications of refrigeration, terminology, Bell Colemann cycle, Vapour compression refrigeration cycle. Calculations for COP, power capacity and mass flow rate. Vapour Absorption System (Ammonia water system) (Numericals only on VCR). | 05 |
| 06 | **Air conditioning**
Properties of moist air, basic psychometric processes. Introduction to air conditioning, applications, comfort air conditioning, summer, winter and year round air conditioning system. | 05 |
Term Work

Term work shall consist of at least one assignment from each module of syllabus, minimum 06 experiments based on topics from syllabus to be conducted and presented with inferences and a detailed report based on Industrial visit to a Thermal power/cold storage/air conditioning plant.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiment/ programs and journal): 10 marks
- Assignments: 10 marks
- Attendance (Theory and Practical): 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal Assessment

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 40% of curriculum) and the other is either a class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Theory Examination

In question paper, weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Question number 1 will be compulsory and based on maximum contents of the syllabus
3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
4. Total four questions need to be solved.

References

Course Code	Course/Subject Name	Credits
PES501 | Business Communication & Ethics # | 2

Common with All Engineering Programs

Pre-requisite: FEC206 Communication Skills

Objectives

1. To inculcate in students professional and ethical attitude, effective communication skills, teamwork, skills, multidisciplinary approach and an ability to understand engineer’s social responsibilities.
2. To provide students with an academic environment, where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.
3. To inculcate professional ethics and codes of professional practice
4. To prepare students for successful careers that meets the global Industrial and Corporate requirement; provide an environment for students to work on Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc.

Outcomes: A learner will be able to …

1. communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities
2. Participate and succeed in Campus placements and competitive examinations like GATE, CET.
4. Have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.

<table>
<thead>
<tr>
<th>Module</th>
<th>Unit No.</th>
<th>Topics</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>Report Writing</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Objectives of report writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Language and Style in a report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Types of reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Formats of reports: Memo, letter, project and survey based</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>Technical Proposals</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>Objective of technical proposals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Parts of proposal</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>Introduction to Interpersonal Skills</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Emotional Intelligence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Leadership</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Team Building</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Assertiveness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Conflict Resolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Negotiation Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Motivation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Time Management</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>Meetings and Documentation</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Strategies for conducting effective meetings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Notice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Agenda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Minutes of the meeting</td>
<td></td>
</tr>
</tbody>
</table>
5.0 | 5.0 | Introduction to Corporate Ethics and etiquettes | 02
---|---|---|---
5.1 | Business Meeting etiquettes, Interview etiquettes, Professional and work etiquettes, Social skills
5.2 | Greetings and Art of Conversation
5.3 | Dressing and Grooming
5.4 | Dinning etiquette
5.5 | Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response, the process of making ethical decisions)

6.0	6.0	Employment Skills	06
6.1 | Cover letter
6.2 | Resume
6.3 | Group Discussion
6.4 | Presentation Skills
6.5 | Interview Skills

Total: 26

List of Assignments
1. Report Writing (Synopsis or the first draft of the Report)
2. Technical Proposal (Group activity, document of the proposal)
3. Interpersonal Skills (Group activity and Role play)
4. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
5. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
6. Corporate ethics and etiquettes (Case study, Role play)
7. Cover Letter and Resume
8. Printout of the PowerPoint presentation

Term Work
Term work shall consist of all assignments from the list.

The distribution of marks for term work shall be as follows:
- Assignments: 20 marks
- Project Report Presentation: 15 marks
- Group Discussion: 10 marks
- Attendance: 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

References
10. Dr. K. Alex ,”Soft Skills”, S Chand and Company
11. Dr.KAlex,”SoftSkills”,S Chand and Company